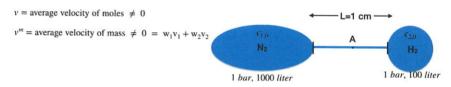

ChE 402: Diffusion and Mass Transfer Homework 1


- 1) A chemical company intends to manufacture a 1 cm thick plates of steel for the construction of hyperloop tunnel. To be effective, the plates need to be treated at 1000 °C with H such that the concentration of H is at least 20% of the surface concentration of H at a depth of 200 μ m below the surface. H diffuses in steel at 1000 °C with diffusion coefficient of 2.4 x 10⁻⁶ cm²/s. Is it economically feasible to producible such steel. In this production, it becomes too expensive to maintain 1000 °C for more than 1 minute. (40 points)
- 2) Derive and then draw the concentration profile in a composite film (interface at L/4) shown on the right assuming steady-state diffusion. The total thickness of the film is L. Diffusivity of the film on the left is D_1 and on the right is D_2 . The concentration on the left side of the film (z=0) is c_0 and on the right side of the film (z=L) is 0. (30 points)

The following relationship between D_1 and D_2 is known: $D_1/D_2 = 0.5$

3) In the diffusion apparatus shown here, a large, well-mixed N_2 reservoir is separated from a well-mixed H_2 reservoir using a small tube with length of 1 cm. D for H_2 is 0.2 cm²/s and for N_2 is 0.1 cm²/s. Calculate mass, molar and volume average velocities at point A (middle of the tube) at the steady state. Also calculate the flux of N_2 at point A. The cross-section of tube is so small that the concentration in the two reservoirs do not change significantly (a pseudo steady-state can be assumed). (40 points)

N₂ is species 1, H₂ is species 2

To check feasibility, we need to find concentration at $Z = 200 \, \mu m$ at time = 1 min

$$\frac{C-C_5}{C_0-C_5} = \text{ext } 3, \quad C_0 = 0$$

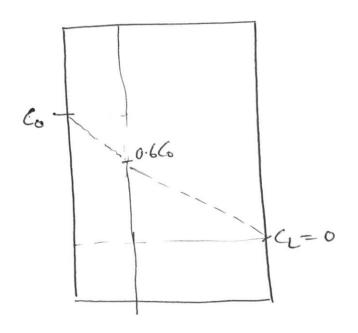
$$\Rightarrow \frac{-\zeta}{\zeta} + 1 = \text{enf} \zeta \Rightarrow \frac{\zeta}{\zeta} = 1 - \text{enf} \zeta - 0$$

$$z = \frac{z}{\sqrt{4Dt}} = \frac{200 \times 10^{-6}}{\sqrt{4 \times 2.4 \times 10^{-10} \times 60}} = 0.833$$

Applying this to
$$\mathbb{D}$$
, we get
$$\frac{C}{4} = 0.24 \implies C = 0.24C_{5}$$

=) Concentration of H at deflh of 200 hm at 1 min reacher 24% of the surface concentration >) Process is feasible.

lets say concentration at the interface = Ci


$$= D_1 \left(\frac{C_0 - C_1}{44} \right) = D_2 \left(\frac{C_1 - C_L}{34/4} \right)$$

$$\Rightarrow \frac{C_0 - C_i}{C_i - C_L} = \frac{1}{3} \left(\frac{D_2}{D_1} \right)$$

$$C_L=0$$
, $D_2/D_1=2$

$$\frac{C_0 - C_1}{C_1} = \frac{2}{3} \Rightarrow \frac{2C_1}{3} = \frac{3C_0 - 3C_1}{3C_0}$$

$$\Rightarrow \frac{C_0 - C_1}{C_1} = \frac{2}{3} \Rightarrow \frac{3C_0}{3C_0} = \frac{3C_0}{3C_0}$$

 N_2 A M_2 M_2 3) Using average relocity of volume 1 bar, 1000 liter 1 bar, 100 like n1= j. + av (no volume charge in the system which is closed) $=) \quad n_1 = j_1^{V} = -D_i \nabla C_1 = \underline{D_i C_{10}} = = constant$ At point $A_{,z} = n_{,z} = G_{,v}$ where $c_{,z} = \frac{G_{,v}}{Z}$ based on symmetry $\frac{D_{G0}}{L} = C_{I} U_{I} \Rightarrow U_{I} = \frac{D_{I}C_{I0}}{LC_{I}} = \frac{2D_{I}}{L}$ =) V = 0.2 cm/s Similarly $n_2 = \frac{D_2C_{20}}{L} = constant$ At point A $n_2 = C_2V_2$ Where $C_2 = \frac{C_2O_2}{2}$ $v_2 = \frac{D_2 C_{20}}{L C_2} = \frac{2D_2}{L}$ => 1/2 = -0.4 cm/s J.= J2 = 0.5 at print A =) v=J, V, + J2 V2 VM = W,V, + W2V2 Where W,A = 28, W2A = 2/30 $\Rightarrow V^{m}$ at $A = \frac{28}{30} \times 0.2 - \frac{2}{30} \times 0.9 = \frac{0.16 \text{ cm/s}}{10.16 \text{ cm/s}}$

3